Home > Broadband and Internet > Africa Will Ignore Satellite Communications At Its Own Peril

Africa Will Ignore Satellite Communications At Its Own Peril

The landing of various undersea cables on the African shores in the last three or so years has heralded a new dawn of high speed communications that offered clearer international calls and faster broadband speeds. These cables have made bandwidth which was once a scarce commodity be in near oversupply. Indeed as I write this, quite a huge chunk of the undersea capacity is unlit.

With the arrival of these cables, telcos and ISPs that once depended on expensive FSS (Fixed Satellite Service) capacity moved their traffic to the more affordable undersea cables. Cost of bandwidth came down but not to the level envisioned by the consumers as most fell by about 40% and not the expected 90%. I had warned of the possibility of these prices not coming down by 90% as was the expectation and hype in a previous blog post in 2009.

Satellite At Inflection Point

Incidentally, when the cables were arriving, some major developments were happening in the Satellite world. However, due to the hype and excitement of the arrival of undersea cables, majority of us didn’t care or notice these changes that were set to revolutionize satellite communications. These changes have created a lot of excitement in the telecommunications world but are largely ignored here as we believe that the undersea cables are the future.

The Situation In Kenya (and by extension Africa)

With several cables landing on the Kenyan coast, it would be expected that quality of service from ISP’s would be at its best. However, this is not the case as the quality of service has greatly deteriorates over time due to a poorly maintained last mile network. We have bandwidth at the shorelines but we are unable to fully utilize its potential. Majority of the operators in Kenya embarked on ambitious plans to lay last mile fibre cable around the country, the same thing is happening in other African countries too albeit at a slower pace. these are good steps, however, these telcos have oversimplified the issue of last mile access to that of laying cable on poles or burying it underground. That’s just 5% of the entire job of last mile provision, the other 95% lays in maintaining the network which sadly none of the telcos were prepared for. they thought that after laying the cables, money would start flowing in. Last mile cable cuts due to civil works is currently one of the biggest cause of downtime in Kenya today, hardly a day ends without incidents of cable cuts as roads are being expanded, new buildings come up and natural calamities such as trees falling on overhead cables and flooding of cable man holes.

Collectively as Africa, we seem to underestimate the size of this continent, operators do not know what it will take to wire Africa to the same levels as Europe or the US. The map below shows the task ahead of us as far as wiring Africa is concerned, its not going to be an easy job. Africa is the size of the US, China, India, Europe and Japan put together. Click on it for a larger image

True size of Africa

This size poses a challenge as far as laying last mile networks in Africa is concerned, the lack of reliable electric power supply also poses a challenge on how far these networks can grow from the major cities. Click on this map here  to see how far behind Africa is in as far as power supply distribution is concerned, it was taken by NASA at night sequentially as each part of the earth moved into night time.

As seen above, it will take quite a large amount of investment to bring this continent to the levels of other continents as far as connectivity is concerned.Even when this is done, it will be an expensive affair which will make connectivity expensive as investors will need a return on their investment.

However, all is not lost as the once derided Satellite service is now making a comeback and will soon give terrestrial services a run for their money. Already, the US and Europe are undergoing a major shift in the use of Satellite to provide broadband service. Currently there are more investors putting their money into satellite launches than into laying undersea cables.

Below are some of the developments in Satellite that will herald this comeback but have sadly slipped past most of us.

Ka-Band Commercialization

Unlike Ku and C band satellites that were in use before the arrival of cables in Africa, Ka-band satellites use spot beam technology which allows frequency re-use and the provision of hotter beams. What this means is that satellite capacity can be greatly expanded due to frequency re-use and CPE equipment is now cheaper due to a hot beam/signal. A single Ka-band satellite is now equivalent to about 100 Ku-band satellites for the same cost. The two main reasons why satellite was ditched for fiber was the cost of equipment and bandwidth. Due to these two developments, satellite operators will soon be offer prices as low as 300 USD per Mbps down from about 6,000 USD per Mbps.

The reason why Ka-band was not commercially viable for sometime was because the technology had not mature enough for viable commercialization. Ka-band which operates at the 17-30Ghz range is susceptible to weather interference but there now exists techniques to counter this hence greatly improving reliability. The High operating frequency meant more expensive detecting equipment (modems) but advances in technology have allowed for the manufacture of affordable 200 USD modems today.

More Efficient modulation Schemes

In Communications, the amount of data that can be sent over a transmission channel is dependent on the noise on that channel and the modulation scheme used. There have been great advances in modulation techniques and noise suppression allowing the pushing of more data over smaller channels. This includes the use of Turbo coding which is so far mankind’s best shot at reaching the Shannon limit. One recent and notable development was by Newtec where they managed to push 310Mbps over a 36Mhz transponder which translates to 8.6Mbps/MHz , previously the much you could do was 2.4Mbps/MHz. Read the Newtec story here.

Combine this with Ka-spot beam frequency re-use and you will have satellite capacity that is cheaper than fiber bandwidth, if you add this to the reach that satellite foot print provides, you will have instant broadband available on the entire continent.

MEO Satellites

At around the same time the cables were landing, a Google-backed broadband project was being announced. The project dubbed O3B (Other 3 Billion) denotes the unconnected 3 Billion people in the world. Google believes that this is the most viable way to avail broadband to the masses. Otherwise how do you explain the fact that Google has never invested in fiber capacity to Africa or the developing countries? I wrote about the O3B project in a previous blog post that you can read here.

The O3B will utilize satellites that are closer to the earth hence the term MEO which stands for Medium Earth Orbit. The fact that these satellites are closer means that latency on the links will be much lower (at 200ms) compared to traditional satellite capacity that gives about (600ms). This will enable higher throughput at lower latencies. To read more on the relationship between  latency and throughput, read this tutorial here

Satellite Refueling

majority of the satellites in orbit have a lifespan of about 15 years. This lifespan is determined by the amount of fuel it can carry. This fuel lasts about 15 years and once its depleted, the satellite cannot be maneuvered and is therefore not usable. As a write this, Intelsat which is the worlds largest commercial satellite fleet operator, has signed up for satellite refueling services from MDA corp to extend the life of some satellites by about 5 years. What this means is that operators can get more money out of their satellites due to extended life and therefore they can now offer cheaper bandwidth.

Combine the advantages of Ka-band spot beam, efficient modulation, LEO satellites and ability to refuel satellites and you have with you the solution to the myriad of problems afflicting consumers in Africa today as far as reliable and high speed broadband connectivity is concerned.

By the end of 2014, Satellites will offer cheaper, reliable and more affordable bandwidth than undersea fiber optic cables. This is the reason why investors are flocking to launch satellites than lay cables. These include Yahsat which is an Abu Dhabi company, Avanti communications launching in Europe and Africa and Hughes which is launching Ka-band satellites in the US mainland for broadband connectivity.If undersea cables were as good as was touted by local operators, why are investors putting money in launching in the US and Europe which are more wired than Africa? Locally, the Nigeria government launched its own communication satellite that they say will enhance broadband reach in the country faster than terrestrial technologies.

Watch this space….

About these ads
  1. May 25, 2012 at 11:37 am

    Hi Tom,

    Thank you for a very well written article that brings together and compares the two most important Wide Area Communication technologies. Whilst subsea cables will always be the preferred route for carrying the majority of intercontinental traffic the advent of commercialised Ka band is a real game changer.

    As a Maritime professional I predicted Ka band for commercial shipping three years ago and now we are eagerly awaiting Inmarsat’s Global Express which will deliver “true” Maritime Broadband.

    As always….thanks for sharing.

    BRGDS,

    • May 25, 2012 at 11:38 am

      Thanks Paul for the comments and welcome.

  2. May 25, 2012 at 12:23 pm

    Hi Tom,
    Thanks alot for this well researched article. I think the problem of Africa is to rely too much on what the Western powers are promoting forgetting do to our own research. I think its worthy noting now that let us develop the sea cables which we dint have before and also still maintain the satellite links.

  3. May 25, 2012 at 2:34 pm

    How do projects such as Kenya’s fiber backed LTE compare to the use of low orbiting satellites? The project is mooted with the promise that LTE over the 700 – 800 Mhz range can cover low use areas with some form of govt. backed roll out?

  4. jack
    March 25, 2013 at 3:19 pm

    Hi Bwana Tom
    Thanks for your insightful writing and the way you deal with technological issues.My main worry is we Africans esp kenyans dont trust ourselves ,we are at war with our neighbors and we cant team up like East Africans and have or lease satellite or bandwidth.Ugandans,Tanzanians are sceptical of kenyans,Uganda is partly ruled.Lets wait for China to dump to us unworking technologies

  5. June 28, 2013 at 3:10 pm

    share some updates

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 85 other followers

%d bloggers like this: