Archive

Archive for the ‘Broadband and Internet’ Category

Netflix experience on Ka-Band VSAT in Kenya

January 8, 2016 7 comments

Yesterday I, like most people here; woke up to the news that the American multinational provider of on-demand Internet streaming media; Netflix, has expanded into several countries including Kenya. Social media reaction in my view was a tie between those who think these new comers will ‘disrupt’ the market currently dominated by Multichoice’s DStv. The jury on what exactly is the meaning of disruption as applied in that discussion, is however still out.

My views on their foray into Kenya aside, I decided to test the service on my home VSAT link. This was after I read on how it works just in case I had made any assumptions that were wrong. Here, I found out that the minimum recommended bandwidth is 3 Mbps for SD quality video and 5 Mbps for HD quality video.

The particulars of the link are as follows:

  • Ka-band service off the Avanti Hylas-2 satellite at 31 degrees East (somewhere above Uganda)
  • 74 centimeter elliptical dish with a 1 watt Ka-band radio
  • Hughes HN9260 satellite router
  • 15 Mbps download and 2 Mbps upload speed
  • Netgear AC2350 Nighthawk X4 WiFi router

With the VSAT kit I achieved a strong enough signal to enable a DVB-S2 carrier at 8-PSK 8/9 on the down link and do a TDMA/FDMA carrier of 2048 Ksps at QPSK 4/5 on return w.r.t the remote terminal

The 74 centimeter dish with a clear view of the western sky. From Nairobi the look angle is a favourable 88.5 degrees

The 74 centimeter dish mounted on a perimeter wall  with a clear view of the western sky. From Nairobi the look angle is a favourable 88.5 degrees

I registered an account and selected a 58 minute SD quality documentary titled “Rise of the drones” and proceeded to view it. Its took about 3 seconds to open the stream and the streaming started.

The Netflix main screen opened on the Firefox browser

The Netflix main screen opened on the Firefox browser

The picture quality was as expected for  an SD video on my old laptop, I however could not identify how to check this video’s resolution on the stream.

Video quality was consistent throughout the session with no downward review of picture quality

I watched it to the end without a single “Netflix and Chill as it buffers” moment and the stream download rate indicator was about 5 minutes ahead of the play indicator throughout the time.

rate

The progress bar (in lighter shade of grey ahead of the red play duration bar) showing about 5-minute lead

The VSAT links Cacti graph for the 58 minute session showed  that the stream consumed an average of just below 3 Mbps with a peak of 3.7 Mbps. During this time the total downloaded data was 1.3 GB by calculating the area under the graph.

Cacti graph utilization during the 57 minutes of documentary streaming.

Cacti graph utilization during the 58 minutes of documentary streaming.

The above results means that in a multi-viewer scenario where more than one person is using Netflix on the LAN , the VSAT’s 15 Mbps capacity can support 4 concurrent viewers without a problem and will be limited only by the WiFi routers’ capability.

Update: I did Netflix for the entire day on Saturday 9th (via a HDMI stream dongle on TV) with my kids in the usual TV schedule as we do on DSTv (punctuated with sessions of outside play, reading/study, quiet times and no TV during meals). We had consumed 19.4 GB by the time we went to sleep.

Advertisements

Broadband as a value add? Yes, Its about the eyes.

June 5, 2015 Leave a comment

InternetThe days of ISPs making super profits are long gone. The margins being created by ISPs world over are thin. Also, should Internet connectivity prices go lower due to either more competition or legislation, ISPs stand to create even thinner margins in future. There will therefore be little if any revenue/profit oriented incentives for ISPs to be in business.

Having worked in the industry for about 12 years now (That’s eons in Internet growth terms), I have seen the ISP industry evolve both on the technology front and its value proposition to customers. The liberalization of the sector in most countries has also attracted many investors into the industry, this has created a stiff and competitive market, this has brought with it diminishing returns on investments. Small ISPs are dying or being bought out as they cannot stay afloat. Large ISPs are also merging to create economies of scale to survive.

With the coming projects such as Google’s project Loon and Facebook’s Internet.org (and subsequent Internet by drones project) and many more that aim to provide nearly free Internet to the worlds’ unconnected, there will be no financial incentive for a commercial ISP to go into business anymore.

So what do ISPs need to do?

There has been a lot of talk in the market about value addition and that ISPs should stop selling ‘dumb pipes’ and offer value over and above just the internet pipe. All this has already happened and at the moment ISPs have been outmaneuvered by OTT providers who are providing this value addition type of services over the links the ISPs are providing to their customers. For example, some years ago, all ISPs were offering VoIP as a value add, now with the likes of Skype and Whatsapp calls, ISP-provided VoIP is a dud. Another example is dedicated hosting at ISP provided ‘data centers’ (a room with access control and cooling 🙂 ), with the maturity of cloud services, such a service is also not appealing anymore to customers. ISPs are at the end of their rope.

If you carefully analyze all recent ISP mergers and buyouts in Africa (and beyond if you have the time), you will realize that buy out decisions are less and less being based on an ISPs profitability or revenues and cash flow position. They are now based on subscriber numbers. But what is the commercial point of buying a unprofitable or low revenue business? Answer: Its about the eyes.

ISPs are and will no longer be about direct internet pipe derived revenues but about indirect revenues. Sources of these indirect revenues include online advertizing, OTT services and content delivery and purchase. This is the very reason why giants such as Google and Facebook have entered the ISP business, Its about the eyes. An ISP with more subscribers and loss making is now more attractive to buy than one with few subscribers and super profitable. Unbelievable isn’t it?

End to end control.

OTT operators such as Facebook have been blamed by traditional ISPs for using the ISPs network infrastructure to do business with the ISPs end users. Attempts by ISPs to make these operators pay for delivery of content has been met with opposition due to fears that such an arrangement can result in a tiered internet and with that a demise of net-neutrality that has been one of the key characteristics and a supposed catalyst of internet development. Attempts to camouflage net-neutrality-flouting arrangements by use of ISP led offers such as Facebook’s Internet.org where users on certain networks access Facebook and Whatsapp for free outside their data plans have also been meeting resistance. Being so froward thinking, I am of the opinion that these companies foresaw the resistance to their initiatives to offer their content for free by paying the traditional ISPs, this is why they are all rushing to roll out their own infrastructure to provide free or near free internet to the masses. At the moment, other than their Satellite/baloon projects being tested in New Zealand, Google is already testing out high speed fiber -FTTH in select American cities. This will give them end to end control of the broadband supply chain and therefore quell concerns of creation of a tiered internet. This of course assumes they will come up with a way to show regulators that they have fair access policies for all third party traffic.

The future

As i see it, the traditional ISP will die a natural death if they don’t adapt to the coming changes. What was once a value add will become the product and vice versa. Internet broadband will be a value add to content and OTT services. A content provider such as Facebook or Google will offer you free internet to access their content. Internet broadband provision will be a value addition to content providers. As someone once said, if the product/service is free, you are the product. The free internet will come with privacy strings attached so as to enable advertizers track your habits and offer more targeted adverts. This targeting is getting more accurate and spookier if the tweet below is anything to go by.

glasstweet

The use of browser safety features to disable cookies wont work as companies such as Google are now using what is known as device finger printing to identify you. Device finger printing works on the basis that your computers OS, installed programs (and the dates they were installed), CPU serial number, hardware configuration (RAM/HDD/attached peripherals) will give your computer a unique identifier if applied to an algorithm. Therefore your computing device is unique and can therefore be tracked without the need to set cookies.

Much A Do About Bundles

March 2, 2015 3 comments

data bundlesKenyans (especially the Internet savvy ones) are an angry lot. Angry because a mobile operator has put in place what they term as restrictive terms of use of purchased data plans such as:

  • Expiry of the purchased data plans 30 days after activation
  • Restricted data bundle sharing ability. A user can only share his or her data with other up to a maximum of 10 times in a month down from 50.

Kenyan’s argument is simple; The operator took their money in exchange for the data and therefore the users have a right to use the plans for as long as they please and share as many times to as many people as they wish. This simplistic argument is based on a layman’s understanding of what exactly happens when you purchase a data plan.

When a user buys a data plan, a contract comes into force, this contract is between the buyer and the mobile operator. The contract obliges the operator to deliver the purchased data when and if required by the user. What we need to note however is that the contract comes into force to offer an option, not a product or a subscription.

An Option is defined as “the ability to take a predefined action for a fixed period of time in exchange for a fee. A product on the other hand is defined as tangible form of value. For value to be provided via an option, the seller must:

  • Identify some action people might wants to take in the future (browse the internet)
  • offer potential buyers the right to take that action before a specified deadline (guarantee the connection to download the purchased GBs)
  • Convince the potential buyers that the option  is worth the asking price (Marketing activities)
  • Enforce a specified deadline for taking action. (Data plan expiry)

Options allow the purchaser the ability to take a specific action without requiring the purchaser to take that action. If you buy a movie ticket for example, you have the ability to take a seat in the movie theater but you don’t have to if a more ‘plotious’ plan comes up that’s better than the movie. Being an option, you cannot seek a refund for not having  watched the movie at the advertised times.

Data plans are not a product, they are an option and are therefore bound by time for the specified action to take place. What you purchase is the ability to download xGBs and not the ‘actual’ GBs. This ability is time bound just like your movie ticket. I think the fact that most Kenyans refer them as ‘bundles’ signifies their belief that they have purchased a product.

Some people are arguing that by the fact that money changed hands, the end-user should determine his or her pace of use of the data plan/bundle and there should be no time limit of the usage. What we forget however is that the contract came into place when you purchased the data plan, but ownership was not transferred from the operator because this is not a products but an option. The contract specifies the terms on which the data plan (not bundle) will be delivered to you but it does not transfer any deeds to the end-user. Because options amount to dispositions of future property, in common law countries they are normally subject to the rule against perpetuities and must be exercised within the time limits prescribed by law.

Just like in companies that mostly offer employees share options and not share ownership. Options have limited specified actions and a time limit attached to it as opposed to share ownership.

The best the users can do is to petition the operator to revise the rules governing the options but not pontificate online about what is essentially an offer to take up an option and not buy a product.

When the operator came up with the feature that enabled a user to share or sambaza their purchased data plan to others, what was happening is that users were transferring their purchased option to a different party on commercial basis. The fact that a user could do the transfer many times posed a danger for the operator because:

  • The exchange of money and the option was between the operator and the purchaser. The contract is therefore enforceable between these two. Sharing the data bundle was innocently aimed at fostering data usage but had the inadvertent effect of complicating the options contract. Who should complain if the service is slow/poor? The original purchaser or the shared data recipient? You might argue that the recipient has a SIM card and is therefore in contract with the mobile operator, purchasing a SIM card and activating it constitutes an invitation to treat and no contract comes into force by activating a SIM card.
  • The option rules must have been understood by the recipient for them to accept. The fact that some people had started purchasing wholesale data and retailing it at much lower prices that the operator was doing wasn’t the issue, the issue was the operator found themselves in a legal quagmire as there were now people on the network exercising options they had not purchased. The retailers were purchasing the wholesale bundles as options and selling them as products.
  • An option for a wholesale data bundle has a longer specific action period in which the user can exercise the option. This is assumed to be the consumption of the data bundle in a manner that will deliver the agreed quality of service. A 200GB bundle has a longer expiry period to say a 10MB bundle, this is because based on the network resources, the higher GB bundle can be delivered over a period of time. If you now take the 200GB and ‘sell’ by sambaza-ing 2GB each to 100 people who will then proceed to consume the 200GB within 3-4 days, that voids the contract because the 200GBs were offered at a much cheaper price because there is an element of predictability of the network resources required over a longer period of time in which the 200GB was to be consumed and if these were consumed in a manner inconsistent to the initial agreement which was to ensure that its consumption also enables other users to enjoy their options, the contract is void. Same way you cannot demand a movie in a theater to be fast forwarded  on scenes you don’t like, data options have usage rules, if you make such a demand in a movie theater, the option contract becomes void and you will be asked to leave the movie theater with no refund.

Citations on some legal terms taken from:

  • translegal.com
  • Wikipedia

Why The Future Is In The Sky

March 6, 2014 Leave a comment

Drone.jpgAfter it’s headline acquisition of Whatsapp, Facebook is finalizing the process of acquiring Titan Aerospace a manufacturer of light weight drones. Facebook wants to use these drones to provide Internet services. By parking the drones about 20Km up in the sky, they will effectively be very low earth orbiting satellites that can beam high-speed internet services to large areas of land and sea.

In April last year, I wrote an article on how low orbit drones will revolutionize telecommunications by replacing Geo-synchronous satellites found at Clarke’s orbit. Other than reducing latency by being close to the earth, they are very cheap to deploy and maintain. To give you an Idea of how cheap they can be, Facebook bought Whatsapp for $19Billion but will buy Titan Aerospace for a paltry $60Million. On the other hand a brand new Geo-synchronous satellite will set you back by about $250Million

Why Drones?

Telecommunications technology advancements mean that telecoms equipment is now smaller and much lighter than before. This means that very powerful equipment is small and can even fit in a backpack. Vodafone recently exhibited a 2G base station that weighs 11 Kgs and could fit in a backpack that can be used to provide GSM coverage in disaster areas, 10 years ago you needed a 20 foot shipping container to host a 2G base station. With these kinds of advancements, it is now possible to use light-weight drones to provide telecommunication services.

The advantage that drones bring is that they are very easy to deploy, no need to dig up streets for several years trying to lay last mile fiber optic cables, they can also be deployed and be re-deployed with relative ease of just launching and flying it to a different position. The drones will use solar panels on their wings to power the telecommunication equipment and also power its engines. The Titan drones can stay in the sky for 5 years non-stop meaning that service reliability from them will be very good and lower running costs. See a video below of the drone model that Facebook will use to provide Internet across the world, they intend to deploy 1100 of these in the first phase.

Other than drones, high altitude weather baloons are also drawing interest from Google Inc who are currently testing internet provision in New Zealand using then. The project called “Project loon” is similar to the drone approach only that in this, baloons are used to suspend telecoms equipment 25Kn in the sky. Read more on this Google project by clicking here

What does this mean?

This project is a text-book example of a disruptive innovation. In his book titled “The Innovators Dilemma” Prof. Clayton Chistensen analyzes how companies or markets that were faced with disruptive innovation reacted and won or lost out to new innovations that were cheaper, simpler and easier. Here is a video of the Professor explaining this concept. (I recommend reading the book though)

This therefore means that the traditional mass market ISPs as we know them are about to face their biggest disruption ever. Any ISP that is to survive the future has to adapt and face skyward and not underground.

How do countries block access to the Internet?

December 9, 2012 9 comments

In the recent past, there has been news of certain countries blocking certain websites or the entire Internet from being accessed by the citizens. We have seen stories of countries in the middle east blocking YouTube, Google and social media websites such as Facebook and twitter during the Arab spring and the recent release of a movie that touched on the Muslim religion. We have also seen countries such as China block access to Facebook for political reasons. Just last week, Syria blocked Internet and mobile access by its citizens as the civil war ragged on.

The distributed nature of the Internet ecosystem means that there is more than one path to  and from an Internet resource such as a server hosting a website. distributed content delivery and hosting also means there exists more than one copy of the same website or content on several servers that are located in geographically distinct regions. For example, if you tried to access a YouTube video from an Internet connection in Kenya, the video could be hosted at the Google cache servers on Mombasa road. A person accessing the same video in the UK can get the same video from a content server in London for example. This poses a challenge to people who might want to block access to the Video.

How the Internet works in ‘layman’ terms

The Internet utilizes a special routing protocol called Border Gateway Protocol (BGP). In BGP, each Internet service provider has IP addresses that they give users who want to connect to the Internet. All of an ISPs IP addresses then belong to what is called an Autonomous System (AS) number  which belongs to the ISP. What happens then is that all ISPs in the world announce their IP addresses under their AS numbers. To find your ISP’s AS number click here.

As an example, assume ISP 1 has the IP addresses from 197.236.64.0 to 197.236.127.255 (total of 16382 addresses) and has them under AS 1, ISP 2 had the IP range from 41.255.32.0 all the way to 41.255.63.255 (16382 addresses also) under AS 2 and so on and so forth up to say ISP100 with IP range x.x.x.x to y.y.y.y on AS 100. So if say for example YouTube is hosted under the IPs that belong to ISP 40 with AS number 40, then if there is a customer on ISP1 that wants to access YouTube, then the routers on each AS will have what is called a routing table that tells them to which AS to send traffic for a particular IP address. A BGP routing table is something like this:

  • To reach the IP range from 197.236.64.0 to 197.236.127.255 on AS 1, send this traffic to the BGP  router advertizing AS1
  • To reach the IP range from 41.255.32.0 to 41.255.63.255 on AS 2, send this traffic to the BGP router advertizing AS2
  • To reach IP addresses on AS n, send this traffic to the router advertizing AS n
  • To reach all other IP addresses that I do not know how to reach, I should ask some few knowledgeable routers at some big ISPs who because of their size might know.

This means very many IP addresses can be addressed by the common AS Number they share. One ISP can have only 1 AS number to address all its customers. The YouTube IP belonging to AS 40 can therefore be reached by the customer on AS 1 if the AS 1 router knows the route to AS 40 from its routing table.

The above is a simplified explanation of how an Internet routing table looks like. From this we see there are three critical conditions that need to be fulfilled for an ISP user such as you and me to reach or be reached from the Internet. These are:

  1. A user must have an IP address
  2. This IP address must belong to an AS
  3. This AS must be announced by BGP to other BGP speaking routers on the Internet.

How then can Internet access be blocked?

The above means that a user without an IP address cannot access the Internet, but it would be nearly impossible to remove all IP addresses from devices in a country if the powers that be do not want them to connect to the Internet.

The easiest way to make these users not reach the Internet or be reachable is to stop announcing their IP addresses and AS number via BGP. This means that if an ISP is asked by the government to stop announcing its AS, then users on that ISP cannot access the Internet. All a government needs to do is threaten the withdrawal of ISP operating license for non compliance and boom, the entire country is without Internet access!

The diagram below shows how about 57 Syrian AS’s containing thousands of IP addresses stopped being reachable on 29th November 2012 after the government ‘asked’ ISP’s to stop announcing them on the net. The few remaining AS’s were most probably government-run networks.

Syria-offline-nov29-2012

On the other hand, a government might want to block access to a particular website. This they can do in several ways.

  1. By asking ISPs to install filters that can detect and filter traffic to and from particular IP addresses that host the website. This is usually a long drawn process and can take months to implement. Iran, China have such systems in place. Nokia Siemens was in the news facing criticism from EU in 2010 for supplying Iran with such equipment.
  2. If a government wants to block with immediate effect without involving the ISP, they can do this by use of illegal means of advertising a more specific route to the website and discarding the traffic upon receipt. In this method, a government announces an AS with a smaller IP block similar to what belongs to the website. Lets say for example there is an AS number 78 advertising the block 195.210.0.0 to 195.210.31.255 (8190 IP addresses), If a government comes up with an AS number 94 with a similar IP address block but more specific say 195.210.0.0 to 195.210.15.255 (4094 IP addresses). Then lets say the website address is 195.210.0.44 which is part of this IP block, then there will be two AS Numbers 78 and 94 announcing that they know how to reach the website IP on the Internet, so which AS is chosen? The AS chosen is the one with a more specific route (less IP addresses on it) in this case the malicious government AS number 94. So user traffic from this country to that website can be picked by the government router and discarded. Pakistan Telecom (The govt controlled incumbent) inadvertently announced routes to YouTube on the Internet in 2008. They however did not apply this to Pakistan ISPs only but this specific route leaked to the Internet causing a worldwide YouTube outage as all YouTube traffic was now being routed to a BGP speaking router in Pakistan. See how it happened here.
  3. Countries or organizations that control the root name servers for top-level domains (TLD) such as .com and .net can also block access to websites using the TLD by not answering domain name queries to the root servers for particular domain names. The root server method is what the hacktivist group anonymous wanted to use to bring down the Internet, if they attacked all the existing 13 root servers and bring them down long enough, then the DNS resolution system would collapse leading to a world-wide Internet blackout. This method of blacking out Internet access to certain websites can only be done by countries or organizations controlling these root servers such as the USA.

There are many other numerous ways to block Internet access or access to certain websites by a country, some legitimate and some illegitimate like example 2 above. All in all, it is very easy to block entire countries from the Internet should the need arise.

Categories: Broadband and Internet Tags: , ,

Is Internet Connection a Public Utility?

November 23, 2012 Leave a comment

If you had just enough electricity to either heat your house during winter or power your PC and give you an Internet connection, what would you chose?

In a recent survey, a group of Americans were asked this question and 63% of them chose the Internet connection over staying warm. In another case, a man dug up his neighbor’s lawn to pass a fiber cable to his house and when the neighbor sued him for damaging his well-manicured lawn, the defendant said that Internet was a utility service and therefore had right of way, the courts however thought otherwise and asked the defendant to pay for the damage done. Some ISPs in Kenya have faced difficulties when laying fiber to the building as landlords demand monthly fees for hosting the ISPs cables in the buildings, ISPs have been adamant in paying this monthly ‘rent’ because they argue that companies like Kenya power or the water distributors do not pay a similar consideration to the landlords to deliver their services to the tenants. The ISPs want the landlords to treat their Internet cables as utility cables and not charge for their routing in the buildings.

The question that arises is if Internet connectivity can be considered a public utility like water and electricity. A public utility can be defined as “a business that furnishes an everyday necessity to the public at large.”   electricity and water are all considered public utilities. In strictly legal terms, there is also a regulatory component in the public utility definition, but here I am concerned with the “everyday necessity” portion. In a utility service like electricity, I want to flip a switch and expect electricity and consume it in quantities that will satisfy my need but at the same time leave enough available to satisfy other people’s (the public) needs too.

I believe the answer to the question on if the Internet is a public utility depends on many factors. The first is geography. In as much as Africa has made great strides in as far as Internet penetration is concerned, we are still very far compared to our European or Japanese counterparts when it comes to not just availability of the Internet but its use also, its one thing to have internet available and another to use it. Statistics show that Africa contributes just about 2% of total Internet traffic and less than 0.1% of the content. Africa is still fighting hunger and disease and lack of clean water, to try classify the Internet as a utility might seem insensitive and counter productive. or is it?

In the rest of the developed world, penetration in some countries is close to 100% (with Norway at 97% and Monaco at 100.6%) compared to Africa’s Highest penetration rate of 51% in Morocco and lowest in South Sudan at 0%. It might seem counter intuitive to classify Internet as a utility in South Sudan for example. However, if this is done, it might actually spur its penetration levels.
The reasons for declaring it as a utility are different for developed and developing countries. Whereas the developed country population is already hooked to the Internet and use it for their daily lives, In developing countries it’s still a luxury and not many can afford it. However, more and more people from developing countries are spending a bigger chunk of their incomes to gain connectivity.

Declaring The Internet as a utility in a developed country will be mostly to spur usage while in a developing country doing so will only spur penetration. The problem however that will arise in both developed and developing countries is that all public utilities must be closely regulated. When the FCC in the US attempted to declare the Internet as a public utility in 2010, it faced a lot of opposition because of the raft of regulatory measures it had put in place. At stake is how far the FCC could go in dictating the way Internet providers manage traffic on their multibillion-dollar networks. The FCC said that its intentions were misunderstood and all it wanted was to guarantee net neutrality. The issue of net neutrality arises from the fact that some ISPs were giving higher preference to traffic from their own services or friendly partners and less priority to traffic from rival networks, eg Comcast was giving video traffic from its sister companies higher priority than traffic of a similar nature from say Netflix or YouTube. Again, the issue of if Comcast is justified in doing this is a discussion for another day.

So the answer to if the internet can be classified as a public utility depends on so many factors. My opinion is this: for the sake of increasing penetration levels, it should be classified as a utility but should be devoid of the close regulation imposed on other utilities such as water and electricity. This is because unlike water and electricity which lack distinct differentiators from one supplier to another (clean water is clean water, 240 volts AC is 240 volts AC), the Internet has unlimited ways in which value addition and differentiation can be done. a regulatory framework to manage this value addition can be cumbersome and self-defeating and market forces should be let to determine which ISP wins the market.

Ka-band Satellite Broadband: Hit or Hype?

August 21, 2012 8 comments

60cm Ka-band dish on a roof top capable of delivering up to 15Mbps

With the landing of several undersea cables in Africa in the last three years, many a pundit have hailed it as a new dawn of telecommunications in the continent. The cables brought with them massive bandwidth capacities to the continent that enabled faster and cheaper communications. Before the arrival of these undersea cables, Satellite was used to connect Africa to the rest of the world. These satellites had the following characteristics:

  1. Expensive due to the fact that satellite transponder leasing was expensive due to the extremely high demand for the capacity. This demand reached peak circa 2005 when operators were even buying capacity from satellites that were still on paper, not yet built and launched.
  2. Due to the cost and scarcity of capacity, many back-haul pipes were congested making satellite communications slow and irritating to use.

The arrival of cheap and abundant terrestrial capacity led many to declare that satellite was destined to history books and that there will be no market for satellite broadband in the years to come.

Three years down the line, reality has hit home as the following facts downed:

  1. The issue of back-haul was resolved by the undersea cables, these cables did not however address the last mile access problem. There is a lot of capacity at the landing stations that cannot be distributed to end users as there is no good last mile infrastructure in place. Spectrum scarcity has also made things worse.
  2. Even on the existing last mile networks and those being put up to meet this demand, reliability has been a key issue due to poorly designed networks and fiber cuts. Industry leaders now seem to agree to this fact as seen here
  3. No regulatory framework was set-up to harness the advantages brought by the availability of bandwidth. Regulators failed to come up with new policies and laws such as infrastructure sharing, spectrum farming and sharing

The result is that the consumer has not benefited much as ISP’s and NSP’s continue to offer mediocre services. There are reports of some ISP customers getting as low as 92% availability which translates to about 29 days of outage in a year.

Will Satellite make a come back?

Before we answer this question, we need to be aware of the key advantages that satellites provide. These are:

  1. Very high availability. No technology beats satellite when it comes to availability. Downtime is rare and far in between making majority of well designed satellite systems achieve the proverbial 99.999% availability (52 minutes of outage in a year).
  2. Satellites offer instant availability of service over a large area without the need to lay additional infrastructure.

With the advent of Ka-band satellites, the landscape is about to change as these will bring with them large amounts of bandwidth and make them available instantly to large geographical regions. The key advantage of Ka-band satellites over the more traditional Ku-band and C-band satellites are:

  1. In terms of capacity, one Ka-band satellite is equal to about 100 Ku-band satellite yet they cost the same to manufacture and put into orbit. This means that capacity on Ka-band will be much cheaper to the point of giving fiber capacity competition.
  2. Ka-band utilizes spot beam technology that enables the use of smaller antenna (as small as 60cm) and cheaper modems. At the moment, a full Ka-band kit is competitive on price to terrestrial technology equipment. Intelsat is developing a spot beam architecture utilizing all bands that will allow 2 satellites to cover all populated continents of the world. Read more on the Intelsat Epic™ project here

With more capacity available to offer higher speeds at much lower costs, with equipment being cheaper and more competitive to terrestrial offerings and giving much higher reliability that terrestrial services can only dream of. What will prevent Satellite broadband from making a come back?

If recent events are anything to go by, Satellite broadband is already making a come back to Africa. The recent launch and uptake of capacity on Yahsat 1B and Hylas-2 satellites over Africa will  avail high-speed capacity whose quality rivals that of majority of the terrestrial services latency not withstanding. The main reason why i think Ka-band will be a game changer in the African broadband market is that operators have realized that it is one thing to roll out a terrestrial infrastructure and another to operate and maintain it. Operational costs of the newly laid terrestrial wired and wireless networks are becoming prohibitively high due to vandalism and sabotage. The terrestrial networks offer very many points of failure to offer any reliable service. Ka-band satellite will offer cheaper bandwidth that is more reliable and easy to access and install on any place in the continent. It takes an average of 3 weeks to survey and install a fiber cable in a city like Nairobi, it takes about 2 hours to fully set-up a Ka-band dish and connect to the Internet….. Once the fiber hype dies, Ka-band broadband via satellite will be a hit in Africa.

Anyone dismissing my argument should look at the following links that talk of roll-out and expansion of Ka-band satellite in Europe, Middle east and USA which we consider to be pretty “wire up” than Africa.

  1. Hughes announcement of the launch of Echostar 17 to offer 100Gbps broadband services in North America: http://bit.ly/ShARi6 after the successful launch and sale of capacity on Spaceway satellites
  2. Viasat Ka-band 100Gbps broadband service offering in North America: http://bit.ly/ShBAjj
  3. Avanti communications announcement of the launch of Hylas-2 to offer services in Mideast, Africa, Europe and the Caucus: http://bit.ly/ShBYhL